Technology Prediction Is Never Well Received "While theoretically and "There is no likelihood man can ever tap the power of the atom." Robert Millikan, Nobel Prize in Physics, 1923 technically tetevision. feasible, commercially and financially I consider it an impossibility, a development of which we need waste little time dreaming." Lee DeForest, 1926 technically television may be "The energy produced by the breaking down of the atom is a very poor kind of thing. Anyone who expects a source of power from the retransformation of these atoms is talking moonshine." "There has been a great deal said about a 3,000 mile rocket. In my "What, Sir? Would you make a ship sail against the wind and currents by lighting a bonfire under her deck? I pray you excuse me. I have no time to about a 3,000 mile rocket. In my opinion such a thing is impossible for many years. I say technically I don't think anyone in the world knows how to do such a thing and listen to such nonsense. "There is no hope for the fanciful idea of reaching the moon, because of insurmountable barriers to escaping the Earth's gravity." Dr. F. R. Moulton, astronomer University of Chicago, 1932 frows now to as such a tining and I feel confident it will not be done for a very long period of time. I think we can leave it out of our thinking." Vannevar Bush, Testimon to Senate "Everything that can be invented has been invented." Charles H. Duell, Director of U.S. Patent Office, 1899 December, 1945 "That is the biggest fool thing we have ever done . . . The [atomic] bomb will never go off, and I speak as an expert in explosives." Adm. Wm. Leahy to President Trui "We must not be misled to our own detriment to assume that the untried machine can displace the proved and (Presumably prior to 6 August) "Rail travel at high speeds is not possible because passengers, unable to breathe, would die of asphyxia." Dr. Diomseys Ladner (1793-1859) tried horse. Maj. General John K. Herr, 1938 Dr. Dionysys Ladner (1793–1859) Siegfried_11_01_01 2 BOEING ## **Several Of Us Shared Ideas** - Brian Tillotson - Thomas Austin - Stan Schneider - Ed McCullough - Harvey Willenberg Siegfried_11_01_01 3 # **Key Technology Requirements –** *Today's Thoughts* | Robotic Missions | Human Near-Term
Lunar | Human Extended Lunar | Human Earth/Sun
Libration Asteroids | Human Mars | |--|---|--|---|---| | Aero braking (Earth/Mars) | (Solar Electric Propulsion) | In Situ Resource Utilization | Human/Robotic Interaction | Zero g Research & Countermeasures | | Autonomous
Rendezvous & Capture | Crew Systems | Surface Habitats | Space Repair &
Maintenance | Advanced Propulsion
(Nuclear/VASMIR)
(Solar Electric) | | Radioisotope Stirling
Cycle Converter | High-Performance
Space Chemical Propulsion | Radiation Protection | Solar Electric Propulsion | Heavy Lift Earth Orbit
Transportation | | Autonomous Operations | Space Habitation
Systems at Lagrange | Regenerative Closed-
Loop Life Support | Regenerative Closed-
Loop Life Support | In Situ Resource
Utilization | | Solar Electric Propulsion | Advanced Life Support
(Minimum Resupply) | Robust/Efficient Surface
Power (Solar) | Aeroassist at Earth
Return | Regenerative Closed-
Loop Life Support
(Plant Growth) | | High-Rate Data
Compression & Transmission | Lunar Transfer Systems
(Landing & Return) | Human/Robotic
Interaction | Long-Term Chemical
Propulsion | Human Robotic
Interaction | | Micro/Nano Electronics | Aeroassist at Earth
Return | Robotic Exploration
Systems | Crew Modules | Advanced EVA/Surface
Mobility | | Radiation-Tolerant
Systems | EVA Suits | EVA & Surface Mobility | Radiation Protection | EVA Suits | | Lightweight/Autonomous
Rovers | Solar Power | Cryo-Propellant
Manufacturing & Storage | Zero g Research &
Countermeasures | Science Systems | | Data Relay Systems
(GPS-Like) | Radiation Warning | Orbital & Surface Navigation | EVA Suits | Radiation Protection | | Planetary Protection
(Both Ways) | | Aeroassist at Earth Return | | Power Systems (Radioisotope
Stirling Cycle Converter) | | Precision Landing | | EVA Suites | | Radiation Protection | | | | Radiation Warning | | Autonomous Operations | | | | | | Health & Psychology | | | | | | Navigation/Data Relay System | 2 #### Mars Sample Return – Required Technology Demonstrations - 15 Key Needs #### **Subsystem Elements** - Solar electric thrusters - Radiation-hardened systems - Trajectory control (autonomous low-thrust navigation) - Stirling cycle converter - Autonomous rendezvous and capture - Sample Selection and Handling - Drill - MEMS IMU - HAN-based monopropellant - Lightweight UHF transponder - Visual navigation sensor & Smart Lite Beacon - Rendezvous and landing Lidar - Autonomous surface operations - Precision entry and landing - Planetary protection testing Siegfried_11_01_01 5 #### Mars Sample Return – Required Technology Development Subsystem Performance Targets | Item | Performance
Resumed | Mass (kg) | Power Req
(Watts) | Volume
CC | Notes | |--------------------------------------|--|-----------|----------------------|--------------|---| | N star thrusters | Max 92.7 Mn thrust lifetime
14,000 hours, Max Isp
3900sec | 8.3 | 2900 Max | | Requirement may not
exceed DS-1 Flight
Demonstration | | MEMS IMU | 1 deg/hr drift, Rad Hard | 0.28 | 0.8 | 26 | Shown on MAV may apply
to other subsystems,
similar to tactical system
application | | HAN water Glycine for HES | Isp 230 (200 Pulse), 20 ms
minimum pulse, high thrust
325N, low thrust 15N | NA | NA | NA | Baselined for recovery
safety on HES | | VisNav Sensor | 100 meters range/S/N .002 | 1 | 5 | 1500 | On SEP | | Smart Lite Beacon (per unit) | 3 watts per cm ² at 150M | 0.1 | 1 | 200 | Multiple units on MAV | | Stirling cycle converter | 4.2 W/kg 110w continuous heat reject 350W per 100W _e | 2.6 | - | | Dual converters heat
control by radiators heat
pipes during cruise | | Drill | 3 m length 1 m/hr rate bit & stem change out capability | | 55 | | Rover main unit | | Miniaturized UHF
Transceiver | 10,000 km max 400 MHZ | 1 | 10 | 100 | MAV and SEP units | | Rendezvous LIDAR and
Landing Unit | 1um scanning mechanical scan | 5 | 32 | 4000 | Same basic unit assumed
for both missions | BOEING ### Mars Sample Return – Emerging Technologies Applicable Horizon Technologies For Baseline Improvement | Item | Benefit | Probability of Occurrence | Applicability | Heritage | Current
TRL level | |--|---|---------------------------|---------------|--|--------------------------| | Lightweight/rollup
high-efficiency solar
cells | 150 W/kg or better reduces system weight | Exist | 1,3,4,6 | AFRL, DARPA | 7 | | Carbon/carbon structural radiators | 40% weight reduction over aluminum | Exist | 1,3,4 | AFRL | 7 | | High-efficiency
batteries (sodium
sulphur) | 150 W/hr/kg at high
operating temp | High | 1,3,4,5,6 | AFRL/SANDIA
Naval Surface
Warfare Center | 7 | | Onboard autonomy | Reduced operations cost—rover operations | High | 1,4,6 | AFRL/DARPA
NASA JPL (NMP) | 5–6 | | Open architecture software | Reprogramming during mission | High—exist | 1,2,4,5,6 | DOD/DARPA
NASA JPL (NMP) | 5–6 | | Supersonic parachutes | Steerable, high-speed
aerobraking | High | 2 | AFRL | 3–4 | | Photonics | Reduce system avionics
weight (20%) with 50–100%
bandwidth increase | High | 1,3,4,6,7 | AFRL/DARPA
Livermore | 5 components
3 system | | 3U-CPCI repackaging | Up to 50% mass power and volume reduction | Medium | 1,6,4 | | | Applicability: 1) Mars cruise, 2) Entry and landing, 3) Lander, 4) Rover, 5) MAV, 6) EP Stage, 7) science Siegfried_11_01_01 7 ## **Advanced Space Technology Of The 21st Century** (Not in any order) - Optical computers/quantum computing/biometric (DNA) computing - Autonomous systems - Human/computer interactive design/manufacturing - Bio-electronics - New materials (phase shifting, new alloys) - "Holodeck" simulation systems—advanced virtual reality - Vehicle/personnel noninvasive monitoring/failure detection/repair - Energy beaming for transfer and propulsion - Micro/nano technology systems - Fusion systems (use of ³He from moon) - Super pressure effects on materials - Genetic engineering for propellant generation/materials creation - Ambient temperature superconductivity - Maglev, temperature control, radiation protection - Particle (anti-particle) storage—anti-matter propulsion - Photonics Siegfried_11_01_01 8 #### **Near Term Development Within 10-20 Years** - Tethers in earth vicinity and in space - Nano technology (structure/biological/electronic/computing) - Indigenous materials use (lunar heavy metals/ construction/propellants) - Bio/electronic computing - Quantum computing/devices - MEMS applications (GN&C/power/data processing) - High temperature superconductors - Mini-magnetospheric plasma propulsion - RF-ION Cyclotron Thrusters (VASMIR) - Energy beaming - Autonomous operations/on site data analysis - Holographic memory/terabite memory - Photonics Siegfried_11_01_01 9 ### **Presently Conceivable Innovations Within 40 Years** - Biometric actuators/sensors - Human-level intellect - Telesurgery/telepresence - Antimatter propulsion - Force field machines (HTSD devices or electrogravitic systems) - Quantum teleportation and communication (quantum entanglements) - Fusion propulsion Siegfried_11_01_01 1 # **Potential Physics Changes** - **◆** Fine-structure constant (∞ migration) - Space energy utilization - Neutrino applications - Super-light speeds - Wormhole time travel Siegfried_11_01_01 11 #### So What? - Shorter trip times - Humans as passengers using their cognitive abilities - Robotic systems with human centered computing - Machines as cognitive prosthesis (extension, not imitation) - Holographic training - Use of indigenous materials Siegfried_11_01_01 12